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Abstract
Purpose Metformin is considered as radiation modulator in both tumors and healthy tissues. Radiomics has the potential to 
decode biological mechanisms of radiotherapy response. The aim of this study was to apply radiomics analysis in metformin-
induced radiosensitivity and finding radioproteomics associations of computed tomography (CT) imaging features and 
proteins involved in metformin radiosensitivity signaling pathways.
Materials and methods A total of 32 female BALB/c mice were used in this study and were subjected to injection of breast 
cancer cells. When tumors reached a mean volume of 150  mm3, mice were randomly divided into the four groups including 
Control, Metformin, Radiation, and Radiation + Metformin. Western blot analysis was performed after treatment to meas-
ure expression of proteins including AMPK-alpha, phospho-AMPK-alpha (Thr172), mTOR, phospho-mTOR (Ser2448), 
phospho-4EBP1 (Thr37/46), phospho-ACC (Ser79), and β-actin. CT imaging was performed before treatment and at the end 
of treatment in all groups. Radiomics features extracted from segmented tumors were selected using Elastic-net regression 
and were assessed in terms of correlation with expression of the proteins.
Results It was observed that proteins including phospho-mTOR, phospho-4EBP1, and mTOR had positive correlations with 
changes in tumor volumes in days 28, 24, 20, 16, and 12, while tumor volume changes at these days had negative correla-
tions with AMPK-alpha, phospho-AMPK-alpha, and phospho-ACC proteins. Furthermore, median feature had a positive 
correlation with AMPK-alpha, phospho-ACC, and phospho-AMPK-alpha proteins. Also, Cluster shade feature had positive 
correlations with mTOR and p-mTOR. On the other hand, LGLZE feature had negative correlations with AMPK-alpha and 
phospho-AMPK-alpha.
Conclusion Radiomics features can decode proteins that involved in response to metformin and radiation, although further 
studies are warranted to investigate the optimal way to integrate radiomics into biological experiments.
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Introduction

Metformin, an antidiabetic agent, was studied as a radia-
tion modifier that acts on both normal tissues and tumors 
[1]. Studies have indicated that metformin can protect 
normal tissues against and sensitize tumors to ionizing 
radiation because of its interesting properties [2, 3]. The 
beneficial effects of metformin on radiotherapy outcomes 
for both cancerous and normal organs were addressed 
in several clinical trials [4, 5]. In an interesting review, 
Chevalier et al. [6], named the metformin “best friend 
of the radiation oncologists” and summarized the clini-
cal benefits of metformin and its radiosensitizing mecha-
nisms. Recently, in a systematic review, Clifford et al. [7] 
reviewed studies on metformin-induced radiosensitivity in 
pelvic malignancies. There is also a wealth of data avail-
able on the use of metformin as a feasible cellular radio-
protector [8, 9].

It is revealed that metformin acts as a radiation modifier 
via altering some mechanisms including tumor hypoxia, 
intrinsic radiosensitivity, tumor proliferation rates, and 
fraction of tumor stem cells [10, 11]. The radiosensitiz-
ing mechanisms of metformin were investigated by several 
studies and main biological pathways were identified. One 
of the main genetic approach that mediates metformin’s 
modulation of radiation response is adenosine monophos-
phate activated kinase (AMPK) signaling pathway [12]. 
AMPK acts via phosphorylation and inactivation of acetyl 
coenzyme A carboxylase (ACC). AMPK also phospho-
rylates some proteins to inhibit mammalian target of 
rapamycin (mTOR) signaling [13]. The mTOR kinase by 
phosphorylation of regulators such as eukaryotic transla-
tion initiation factor 4E-binding protein (4EBP1) regulates 
cellular metabolism, growth, and proliferation [14].

Recently, many attempts have been made to find bio-
logical pathways involved in cancer diagnosis and treat-
ment using quantitative parameters extracted from medi-
cal images [15, 16]. Several studies have identified that 
radiomics features could predict the mutation status of 
different genes that have roles in cancer diagnosis and 
prognosis, specific molecular pathways in cancer devel-
opment, and the immunological mechanisms of cancers 
[17]. Furthermore, radiogenomics studies have revealed 
that several imaging features have correlations with genes 
or proteins that play role in cancer biology [18].

Although, most radiomics studies have been conducted 
in the clinic and with human data, several research works 
were performed in the laboratory and on animals [19]. In 
animal radiomics studies, researchers enable better under-
standing of the biological meaning of radiomics and also 
examine different therapeutics to find most individual-
ized treatment for several diseases [20]. In another way, 

because metformin was known as a radiation modifier that 
could enhance the radiosensitivity of tumors via activating 
some signaling pathways, modeling the radiosensitivity of 
such agents will provide more accurate selecting patients/
radiosensitizers and decoding the signaling pathways in 
the road of personalized medicine. This study aims to 
apply radiomics analysis for metformin-induced radiosen-
sitivity and finding radioproteomics associations between 
computed tomography (CT) imaging features and proteins 
involved in metformin radiosensitivity signaling pathways.

Materials and methods

Animals

A total of 32 female BALB/c mice, 6–8 weeks of age, 20 g 
in weight, were used in this study. All of the mice were kept 
in a room under constant temperature (22 ± 2 °C), humid-
ity (55–60%), and illuminated 8:00 a.m. to 8:00 p.m. The 
animals were accustomed to the laboratory conditions for a 
week prior to the experimentation session.

Experimental design and treatment protocol

Subcutaneous tumors were established by injecting 1 ×  106 
4T1 breast cancer cells into the right dorsal flank of BALB/C 
mice. When tumors reached a mean volume of 150  mm3, 
mice were randomly divided into the following four groups 
(n = 8 for each group):

Control: animals were treated with drinking water con-
taining no metformin for 4 consecutive weeks and exposed 
to sham irradiation on the 7th day.

Metformin: animals were treated with drinking water con-
taining metformin (300 mg/kg body weight per day) for 4 
consecutive weeks and exposed to sham irradiation on day 7.

Radiation: animals were treated with drinking water con-
taining no metformin for 4 consecutive weeks and exposed 
to a single dose of 10 Gy X-rays on the 7th day.

Radiation + Metformin: animals were treated with drink-
ing water containing metformin (300 mg/kg body weight per 
day) for 4 consecutive weeks and exposed to a single dose 
of 10 Gy X-rays on the 7th day.

Metformin was daily administered at 300 mg/kg body 
weight via drinking water till euthanasia [21]. To ensure the 
desired concentration (300 mg/kg) of metformin in drink-
ing water, the intake of metformin and drinking water was 
adjusted daily. On the other hand, tumor growth was evalu-
ated every 4 days using a caliper and tumor volume was 
calculated as (long diameter) × (short diameter)2 × 0.52 [22, 
23].
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Irradiation

X-ray irradiation was performed using energy 6 MV from 
a medical linear accelerator (Elekta, Stockholm, Sweden) 
at a dose rate of 2 Gy/min and a source to-surface distance 
(SSD) of 100 cm. The tumor on the right dorsal flank locally 
exposed to a single dose of 10 Gy and the rest of body was 
shielded by a lead sheet.

Western blot analysis

At the end of treatment procedure, on day 28, mice were 
euthanized by  CO2 asphyxiation and their tumors were 
removed. Tumor tissues were mixed with RIPA lysis buffer 
containing protease inhibitor cocktail (MyBioSource, USA). 
Lysates were centrifuged and supernatant was collected. 
After quantified using BCA protein assay kit (Pierce, Rock-
ford, USA), 80 μg protein was separated by 6%-12% SDS-
PAGE and transferred to polyvinylidene fluoride (PVDF) 
membrane (Pall, NY, USA). Membranes were blocked with 
5% fat-free milk in Tris-buffered saline-Tween 20 (TBST, 
20 mM Tris, pH 7.6, 137 mM NaCl, and 0.1% Tween 20) 
for 1  h at room temperature, followed by an overnight 
incubation at 4 °C with primary antibodies: AMPK-alpha, 
phospho-AMPK-alpha (Thr172), mTOR, phospho-mTOR 
(Ser2448), phospho-4EBP1 (Thr37/46), phospho-ACC 
(Ser79), and β-actin. The β-actin protein levels were used 
as a control to verify equal protein loading. All antibodies 
were used at a dilution of 1:1000. Blots were subsequently 
washed three times with TBST and then incubated with the 
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies 1 h at room temperature. After three additional TBST 
washes, the band signals were detected using an enhanced 
chemiluminescence (ECL) kit (Amersham Biosciences, NJ, 
U.S.A.) according to the manufacturer’s instructions. The 
intensity of the protein bands in the blots was determined 
with ImageJ software (NIH, Bethesda, MD, USA). The 
levels of target proteins expression were first quantitated 
relative to the expression of β-actin, and then normalized to 
the background expression in drinking water-treated mice 
(control).

Computed tomography (CT) imaging

CT imaging of mice was performed before treatment (base-
line: tumor volume ~ 150  mm3) and at the end of treatment 
(day 28) in all groups. CT imaging was performed on a 
16-slice CT scanner (Somatom Definition, Siemens Medi-
cal Solutions, Germany) using an optimized mice imaging 
protocol: 512 × 512-pixel matrix, 0.2 mm pixel size, 80 kVp 
X-ray tube voltage, 60 mA tube current, 16 × 1.2 mm col-
limation, 5–8 mm table feed/ rotation, 0.6 s rotation time, 
and slice thickness of 0.6 mm.

Tumor segmentation

The volume-of-interest (VOI) segmentation was performed 
manually using 3D slicer software (version 4.10.2; available 
at: http:// slicer. org/) and verified by experienced radiologist 
in cancer imaging (Fig. 1).

Preprocessing and feature extraction

Before feature extraction, preprocessing steps including 
wavelet and Laplacian of Gaussian (LOG) filters, resampling 
to 1 × 1 × 1  mm3 and discretization to 64 bin (BIN64), were 
applied on CT images. For LOG filter, different sigma val-
ues were used to extract fine, medium, and coarse features; 
specifically, they ranged from 0.5 to 5 with 0.5 steps. Wave-
let filtering yields 8 decompositions per level (all possible 
combinations of applying either a high or a low pass filter in 
each of the three dimensions including HHH, HHL, HLH, 
HLL, LHH, LHL, LLH, and LLL). Radiomics features were 
extracted using the PyRadiomics version (2.2.0) implemen-
tation in python (version 3.6.4). Extracted features were cat-
egorized to the different feature classes. The classes include 
first order statistics (19 FOS features), shape-based (16 
Shape features), gray level co-occurrence matrix (24 GLCM 
features), gray level run length matrix (16 GLRLM features), 
gray level size zone matrix (16 GLSZM features), neighbor-
ing gray tone difference matrix (5 NGTDM features), and 
gray level dependence matrix (14 GLDM features).

Feature selection

Feature selection was done to find the features, which are 
related to tumor volume using Elastic-net regularized linear 
regression model by “glmnet” R package (version 4.1.1). 
The optimal tuning parameters were estimated using leave-
one-out cross-validation with 1000 bootstrapping samples 
by “glmnetSE” R package. Elastic-net linear regression is 
an extension of linear regression that includes penalties to 
the loss or cost function. Elastic-net is a linear combination 
of ridge and least absolute shrinkage and selection operator 
(LASSO) penalties and brings both advantages penalties of 

Fig. 1  Tumor delineation on axial slice of CT image

http://slicer.org/
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ridge and LASSO. The changes in tumor volume and radi-
omics features were considered as the response variable (Y) 
and associated features (X), respectively.

Univariate / multivariable radiomics analysis 
and model evaluation

To calculate p value for selected features in univariate and 
multivariable analysis, generalized linear model was applied. 
Also, R-squared and root mean square error (RMSE) index 
as goodness of fit indices for linear regression were meas-
ured to find the optimal model. Moreover, likelihood ratio 
test (LRT) was used for statistical comparisons between the 
groups. These analytical methods were performed using 
“glm” R function. p values were adjusted by Benjamini 
and Hochberg method [24]. We applied false discovery rate 
(FDR) online calculator using the web-based tool (https:// 
www. sdmpr oject. com/ utili ties/? show= FDR). Statistical sig-
nificance was considered at the level of 0.05.

Protein expression analysis and time trend analysis

After checking the parametric test assumption (e.g., nor-
mality), Kruskal–Wallis test and Dunnett's test were used 
for statistical comparison of the proteins expression level 
between studied four groups and each three intervention 
groups compared with control group (as a reference group), 
respectively. To compare time trends of tumor volume 
between groups over time, repeated measure ANOVA with 
a linear trend was used. These statistical analyses were ana-
lyzed using GraphPad Prism 6 and SPSS software (Versions 
16). Statistical significance was considered at p value < 0.05.

Interactive hierarchical clustering heatmap

Hierarchical clustering heatmap plot of Spearman's correla-
tions between proteins expression and tumor volumes and 
hierarchical clustering heatmap plot of Spearman’s corre-
lations between proteins expression and selected features 
with change tumor volume in IR plus Metformin group were 
drawn using “heatmaply” R package (version 4.1.1) [25].

Results

Tumor volume change

Our results on tumor volume changes in different groups 
based on the follow-up time are shown in Fig. 2. As was 
seen, the trend of tumor volume changes was significantly 
different among groups and the Metformin + IR group has 
the maximum changes after irradiation across times.

Protein expression

Our results on statistical comparisons of protein expression 
between each group with control as reference group are 
shown in Fig. 3. As shown, the expression of proteins was 
significantly different among different groups in comparison 
with control groups. Furthermore, the expression of three 
proteins including AMPK-alpha, phospho-AMPK-alpha, 
and phospho-ACC in Metformin + IR group has the high-
est amount in comparison with other groups, while in this 
group, the three remained proteins (mTOR, phospho-mTOR, 
and phospho-4EBP1) have the lowest values of expression.

Fig. 2  Comparisons of trend 
curves between each three 
groups with control as reference 
group (all of p values < 0.001)

https://www.sdmproject.com/utilities/?show=FDR
https://www.sdmproject.com/utilities/?show=FDR
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Selected features

Our selected radiomics features to identify most related fea-
tures with tumor volume at baseline are shown in Table 1. In 
group Control, features including wavelet-HHH_GLSZM_
GLNU_Normalized, Log-Sigma-5mm_FO_Maximum, and 
Wavelet_HHL_GLSZM_SZNU_Normalized with, respec-
tively, variable importance of 96%, 69%, and 64% were 
selected (adjusted p value < 0.05). In group Metformin, the 
selected radiomics features with adjusted p value < 0.05 were 
wavelet-LLHglrlmLongRunEmphasis, log-sigma-2–0-mm-
3DglcmAutocorrelation, wavelet-LHLglrlmLongRunEm-
phasis, wavelet-HLLglcmSumEntropy, and wavelet-LLHgl-
rlmGrayLevelNonUniformity. In group irradiation, features 
including log-sigma-1–5-mm-3Dfirstorder10Percentile 
and log-sigma-3–5-mm-3DglszmLargeAreaLowGrayLev-
elEmphasis with importance values of 97% and 58% were 
selected. Furthermore, in group irradiation + Metformin, 
radiomics features with adjusted p value < 0.05 were log-
sigma-3–0-mm-3DfirstorderKurtosis, wavelet-HLLfirst-
orderKurtosis, log-sigma-3–5-mm-3DfirstorderKurtosis, 
and log-sigma-3–0-mm-3DglcmClusterShade.

Selected features to identify the most related features 
with tumor volume change (Day 28-baseline) are shown in 
Table 2. Radiomics features with adjusted p value < 0.05 in 
group control were wavelet-HHLglcmContrast, log-sigma-
5–0-mm-3DglcmImc2, and wavelet-HLLngtdmStrength. 
In group Metformin, the significant features were wavelet-
HHHfirstorderUniformity, log-sigma-0–5-mm-3DglrlmLon-
gRunLowGrayLevelEmphasis, and log-sigma-3–5-mm-3Dgl-
cmInverseVariance. In group, irradiation, features including 
wavelet-LHLglcmInverseVariance, wavelet-HHLglszmSmal-
lAreaLowGrayLevelEmphasis, originalglszmSmallAreaEm-
phasis, and wavelet-LLHglcmCorrelation were selected. In 

group irradiation + Metformin, selected features with adjusted 
p value < 0.05 were log-sigma-2–0-mm-3DglcmClusterShade, 
wavelet-LHHglszmLowGrayLevelZoneEmphasis, riginal-
gldmSmallDependenceLowGrayLevelEmphasis, wavelet-
HLLgldmGrayLevelNonUniformity, wavelet-LHLngtdm-
Strength, log-sigma-5–0-mm-3DglcmDifferenceVariance, 
and wavelet-HHHfirstorderMedian.

Radioproteomics analysis

Our radioproteomics analysis is shown in Figs. 4, 5. In Fig. 4, 
correlation of proteins expression and tumor volume is 
depicted and is clearly shown that proteins including phospho-
mTOR, phospho-4EBP1, and mTOR have positive correlation 
(more than 0.5) with changes in tumor volumes in days 28, 
24, 20, 16, and 12, while tumor volume changes at these days 
have negative correlation with AMPK-alpha, phospho-AMPK-
alpha, and phospho-ACC proteins. In Fig. 5, it is observed 
that some selected radiomics features have strong positive 
and negative correlations to selected protein expression. For 
example, Median feature (a first order feature) has positive cor-
relation to proteins namely AMPK-alpha, phospho-ACC, and 
phospho-AMPK-alpha. Furthermore, Cluster shade (a GLCM 
feature) has positive correlation to mTOR and p-mTOR. On 
the other hand, low gray level zone emphasis (LGLZE) as a 
GLSZM feature has negative correlation to AMPK-alpha and 
phospho-AMPK-alpha.

Discussion

Metformin enhanced radiosensitivity in cancer cells and 
its radioprotective effect on normal cells is a promis-
ing approach to consider it as a feasible issue to increase 

Fig. 3  Western blot analysis for the effect of metformin, 10  Gy 
irradiation or combined on target proteins expression level. (A): 
shows immunoblot images of AMPK-alpha, P_AMPK-alpha (phos-
pho-AMPK-alpha), P_ACC (phospho-ACC), mTOR, P_mTOR 

(phospho-mTOR), P_4EBP1 (phospho-4EBP1). β-Actin was used 
as loading control. (B): statistical comparison of protein expression 
between each group with control as reference group. *** indicates 
significant difference between each of three groups and control group
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radiotherapy outcome [26]. Many studies have been con-
ducted to find the main mechanisms of such effects induced 
by metformin. However, these studies are based on the 
invasive molecular studies that are also expensive and time 
consuming. Recently by introducing radiomics and stud-
ies on the correlation between imaging features and genes/
proteins, it was clarified that quantitative imaging measures 
can be used as non-invasive, easy to use, and cost-effective 
biomarkers to decode the biological pathways involved in 
cancer diagnosis and treatment [27, 28]. In this paper, we 
aimed to find how CT imaging features can reveal the pro-
teomics pathways in metformin-enhanced radiosensitivity.

In this work, we found that some proteins involved in 
radiosensitivity pathways have correlation with tumor vol-
ume changes. We identified that proteins, phospho-4EBP1, 
phospho-mTOR, and mTOR, are highly correlated to tumor 
volume changes in days 12 to 28. As these proteins have a 

great role in metformin pathways, they act as key parameters 
to enhance radiation cell killing and, therefore, reduce the 
volume size of tumor. These results could pave the way for 
personalized therapy using radiomics features, if confirmed 
by larger sample sizes in both preclinical and clinical stud-
ies. These features provide insights into the key mechanisms 
underlying drug-induced treatment modulation. On the other 
hand, by finding correlation between radiomics features and 
proteins, new drugs can be discovered or optimized based 
on the medical imaging.

In an interesting part of our study, we observed that 
several radiomics features have correlation to proteins in 
metformin-enhanced radiosensitivity pathway. We identi-
fied that feature Wavelet_HHH_firstorder_Median is highly 
correlated to phospho-ACC, AMPK-alpha and phospho-
AMPK − alpha, Dependence_Low_Gray_Level_Emphasis 
is correlated to phospho-AMPK-alpha, and GLCM_Cluster 

Table 1  Feature selection for identify of related features with tumor 
volume at baseline by “glmnet” and “glmnetSE” R packages with 
1000 bootstrapping and leave-one-out cross-validation and “glm” R 

function for calculation of p value and comparisons among groups 
(control was considered as the reference)

p value by Wald chi-square test, Adj. p value: p value adjusted by Benjamini and Hochberg method, overall  R2 is based on the multivariable 
linear regression, last column indicates p values for statistical comparisons of the linear models among the groups (Control as a reference group) 
using likelihood ratio test (LRT), bold adjusted R-squared indicates the best outperformed model based on the highest value of R-squared and 
lowest value of RMSE, bold adjusted p value indicates as statistically significant at level of 0.05

Groups Selected variables Variable 
impor-
tance

Adj. p value Adjusted  R2 p value of com-
parison between 
groups

Control wavelet-HHHglszmGrayLevelNonUniformityNormalized 96% 0.001 0.218 Reference
log-sigma-5–0-mm-3DfirstorderMaximum 69% 0.028
wavelet-HHLglszmSizeZoneNonUniformityNormalized 64% 0.041
wavelet-HLHfirstorderUniformity 50% 0.165
wavelet-LLHglcmImc2 43% 0.289
wavelet-HLHglcmIdmn 39% 0.714

Metformin wavelet-LLHglrlmLongRunEmphasis 96% 0.001 0.278 0.153
log-sigma-2–0-mm-3DglcmAutocorrelation 69% 0.041
wavelet-LHLglrlmLongRunEmphasis 78% 0.022
log-sigma-0–5-mm-3DglcmInverseVariance 21% 0.627
wavelet-HLLglcmSumEntropy 79% 0.022
wavelet-LLHglrlmGrayLevelNonUniformity 87% 0.005
log-sigma-1–0-mm-3DglcmId 30% 0.468

IR log-sigma-1–5-mm-3Dfirstorder10Percentile 97% 0.001 0.229 0.768
wavelet-HHHglcmClusterTendecy 42% 0.202
log-sigma-3–5-mm-3DglszmLargeAreaLowGrayLevelEmphasis 58% 0.048
log-sigma-5–0-mm-3DgldmLargeDependenceEmphasis 38% 0.354
wavelet-HHHglcmClusterProminence 46% 0.243

IR + Metformin log-sigma-3–0-mm-3DfirstorderKurtosis 79% 0.020 0.275 0.193
originalngtdmContrast 36% 0.382
wavelet-HLLfirstorderKurtosis 60% 0.048
log-sigma-3–5-mm-3DfirstorderKurtosis 59% 0.050
log-sigma-3–0-mm-3DglcmClusterShade 71% 0.010
wavelet-LHHfirstorderMedian 55% 0.117
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Shade is correlated to phospho-mTOR and mTOR. As was 
described in previous papers [29], these features measure 
the distribution of pixel intensities and show how hetero-
geneities within a tumor could be measured by such simple 
parameters.

Understanding the biological meaning of radiomics is an 
active area of research. Several human and animal studies 
have attempted to address these issues. In a recent animal 
trial, correlations between the expression of histological 
tumor microenvironment (TME) and MRI radiomics fea-
tures were analyzed and correlation between texture features 
and hypoxia biomarkers was found [30]. In a review paper 
[31], the biological meaning of radiomics features is dis-
cussed and it was proposed that radiomics studies should 
be biologically validated in the process of model building 

or subsequent validation. It is also having to be mentioned 
that biological validation of such preclinical studies is not 
sufficient and human trials are needed for further validation.

Several radioproteomics studies have been conducted in 
some types of cancer. For example, in a study by Kayadibi 
et al., Ki-67 expression was predicted in breast cancer using 
MRI radiomics features [32]. Lehrer et al. [33], investigated 
links between MRI features to deregulated protein expres-
sion and pathway activity in lower grade glioma using 
multiple-response regression analysis. They identified that 
multiple proteins associated with imaging features. In this 
study, it was observed that VASARI features have correla-
tion with expression of IL8, PTEN, PI3K/Akt, Neuregulin, 
ERK/MAPK, p70S6K, and EGF signaling pathways. Beer 
et al. [34], investigated the association between CT features 

Table 2  Feature selection for identify of related features with change 
tumor volume (Day 28-baseline) by “glmnet” and “glmnetSE” R 
packages with 1000 bootstrapping and leave-one-out cross-validation 

and “glm” R function for calculation of p value and comparison of 
goodness of fit among groups (Control was considered as the refer-
ence)

p value by Wald chi-square test, Adj. p value: p value adjusted by Benjamini and Hochberg method, overall  R2 is based on the multivariable lin-
ear regression, last column indicates p values for statistical comparisons of linear models among the groups (Control as a reference group) using 
likelihood ratio test (LRT), bold adjusted R-squared indicates the best outperformed model based on the highest value of R-squared and lowest 
value of RMSE, bold adjusted p value indicates as statistically significant at level of 0.05

Groups Selected variables Variable 
impor-
tance

Adj. p value Adjusted  R2 p value of com-
parison between 
groups

Control wavelet-HHLglcmContrast 51% 0.043 0.258 Reference
wavelet-LHLglcmInverseVariance 50% 0.069
wavelet-LHLgldmLowGrayLevelEmphasis 39% 0.260
log-sigma-5–0-mm-3DglcmImc2 60% 0.011
wavelet-LHLglrlmLowGrayLevelRunEmphasis 29% 0.490
log-sigma-2–5-mm-3DglszmLowGrayLevelZoneEmphasis 43% 0.286
wavelet-HLLngtdmStrength 65% 0.009
log-sigma-4–0-mm-3DglrlmShortRunLowGrayLevelEmphasis 47% 0.243
log-sigma-4–5-mm-3DglszmSmallAreaLowGrayLevelEmphasis 37% 0.365

Metformin wavelet-HHHfirstorderUniformity 62% 0.012 0.399 0.003
log-sigma-0–5-mm-3DglrlmLongRunLowGrayLevelEmphasis 77% 0.008
log-sigma-3–5-mm-3DglcmInverseVariance 93% 0.001

IR wavelet-LHLglcmInverseVariance 77% 0.011 0.418 0.001
wavelet-HHLglszmSmallAreaLowGrayLevelEmphasis 71% 0.030
originalglszmSmallAreaEmphasis 84% 0.005
wavelet-LLHglcmCorrelation 95% 0.001
log-sigma-3–0-mm-3DglszmSmallAreaEmphas 55% 0.160
wavelet-LLLglrlmLongRunLowGrayLevelEmphasis 31% 0.456
wavelet-LHHglszmSizeZoneNonUniformityNormalized 27% 0.520

IR + Metformin log-sigma-2–0-mm-3DglcmClusterShade 98% < 0.001 0.608 < 0.001
wavelet-LHHglszmLowGrayLevelZoneEmphasis 86% 0.001
originalgldmSmallDependenceLowGrayLevelEmphasis 72% 0.003
wavelet-HLLgldmGrayLevelNonUniformity 66% 0.005
wavelet-LHLngtdmStrength 62% 0.010
log-sigma-5–0-mm-3DglcmDifferenceVariance 57% 0.032
wavelet-HHHfirstorderMedian 55% 0.039
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with proteomic data in patients with high-grade serous ovar-
ian cancer and observed association between the CRIP2 and 
CKB proteins and some texture features that represented 
intra- and inter-site tumor heterogeneity.

Due to the nature of using an animal model, this study 
has some limitations. First, a total of 8 mice per group is a 
small sample size for multiple testing in this study. Second, 
we employed a clinical CT scanner for our tests, but using 
micro-CT, which has a higher resolution, could enhance the 

quality of this study. However, Kirschner et al. [35] showed 
that clinical CT scanner may reliably be used for in vivo 
imaging and volumetric analyses of brain tumor growth in 
mice. Moreover, they reported that clinical CT scanner allow 
the in vivo detection of macroscopic changes of tumor mor-
phology in mice. Furthermore, we recommend a quantitative 
assessment of the reproducibility of the selected radiomics 
features for future analysis. It would enhance the prediction 
power of the models.

Fig. 4  Bi-cluster heatmap plot of correlations between proteins expression and tumor volume over time. p-AMPK-alpha: phospho-AMPK-alpha; 
P-ACC : phospho-ACC, p-mTOR: phospho-mTOR, p-4EBP1: phospho-4EBP1, TV: tumor volume

Fig. 5  Bi-cluster heatmap plot of correlations between proteins expression and related features with change tumor volume in IR plus Metformin 
group. p-AMPK-alpha: phospho-AMPK-alpha, P-ACC : phospho-ACC, p-mTOR: phospho-mTOR, p-4EBP1: phospho-4EBP1
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Conclusion

In the present study, we identified radiomics features can 
decode proteins that involved in response to metformin and 
radiation. In this preclinical study, several CT features have 
been found as markers to capture biological information by a 
non-invasive manner. Further studies are warranted to inves-
tigate the optimal way to integrate radiomics into biological 
experiments.
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